90.意义所在
李轩说的每一个字都听懂了,但是怎么推理出结论,徐灵初想不明白,拿起菜单,若有所思地看着,想跟上李轩的思路。 其他同学也看着李轩发呆,震惊李轩心算之强,这么快速地算出来。 林雪芮也拿起一份菜单来看,陷入了沉默之中。 她懂李轩推理的思路,但是得动笔,才能推理出李轩的结论。要她心算线性方程组的解,她是办不到,李轩这样的运算能力不可思议。 想起上次李轩给出彭赛列定理的三个证明办法,她就看出李轩空间图感很好。 但现在李轩给了新惊喜,就是逻辑推理能力强,数学运算能力强。 林雪芮看了菜单几眼,想了一下,还是觉得匪夷所思,“李轩,你真的只是看了几眼,就能心算出卤肉16元?” 李轩心想,他本来运算能力就不差,现在他运算能力比原来提升了一倍,不碾压身边人才怪。 不过这种开挂的提升,李轩不能对任何人说,当下只是说:“教练,我天生比较擅长运算。” 梁智慧听了皱眉,李轩不是擅长几何吗?什么时候擅长运算了? 他承认他嫉妒了。 怎么能不嫉妒呢,他夜以继日的努力,就是为了超越了李轩。现在他每天研究数学,希望有李轩的高度,结果差距没有拉近了,反而被拉大了。 关键是现在他越来越感觉,李轩天赋比他还好,这才是打击他自信心的重点。 李轩就是天才? 林雪芮也在想,但很快摇了摇头,或许还不能算天才,只能说天赋比她出色。 来自北大数院,说来她就没见过什么真天才,她能考上北大,在常人眼里也是天才,但她知道,所谓天才不过是漂亮的糖纸。 无非是把别人吃饭睡觉游戏都拿去思考了。思考的时间是常人十倍百倍,付出的脑力是常人十倍百倍,才换来了碾压身边人的十倍百倍实力。 反正在北大,她没见过不努力还能不掉队的,自认为脑袋好的,不努力的,挂科的挂科,留级的留级,从来没有天生就会的人。 而天才的称呼,必须有成果做后盾,才能当之无愧。 反应快,运算快,却没有什么学术成就,充其量就是高级计算机,没有数学灵感,一样是庸才,并没有什么卵用。 有人运算差,但是有电脑当工具,数学直觉好,能想到常人想不到的东西,取得丰硕的科研成果,照样是天才。有学术成果才有相应的声誉,科研向来如此。 数学就是培养思维,计算交给计算器去做。 在数学竞赛之中,也是不会因为你运算快而加分,考试留给考生的思考是足够长的,也是考虑到不能埋有灵性的天才。 当然了,运算快并不是一无是处,也有好处,至少省去浪费不必要时间。 所以说,李轩是不是数学天才,还要再看看。 后人容易神化前人,将前人的智商拔高到神的地步,科学神教的教徒遍布世界。 但是实际怎样无人得知,数学是很看重灵感的,许多人研究穷极一生,也比不过别人灵光一现,这种数学直觉很强的人,不论运算能力怎样,都可以叫作数学天才。 说到数学天才,林雪芮想起了欧拉和黎曼。 如果勤奋是天才最重要的特质,她没听过有人比欧拉还勤奋,到死的前一刻都在研究数学。 欧拉发明了三角函数sin,cos,tan,圆周率π,自然底数e,函数f(x)等这种符号,把复杂的知识让普通人也能轻易理解,影响了后世几百年。 以往数学家写书都往复杂绕,只写结论,不写思考过程,怕别人学了去,但欧拉将数学论文写得简单,生怕别人看不懂他是怎么想的。 数学史上公认最伟大的四位数学家是阿基米德,牛顿,欧拉和高斯。其中欧拉的故事最没有戏剧性,游离于三大数学天才之外,但是接触到高等数学,才会发现绕不开欧拉,他无所不在,无孔不入。 除此之外,欧拉运算能力极强,不仅是四则运算,高等数学也可以心算,他双目失明时候,开创“分析力学”和“刚体力学”,被后世誉为“分析的化身”。 李轩运算能力一流,比她强,已经超出普通人范畴,虽然和欧拉这种超一流不能比,但是肯定比百分之九十九的人出色。 灵感,数学直觉,这东西说起来虚无缥缈,没有成果出来前,谁也不知道李轩有没有。 当然了,她最佩服的还是黎曼,几何TOP1的天才,如果李轩有黎曼十分之一的创造性,就可以算天才。 如果灵感、创造性是天才另一个特质,她也找不到数学天才比黎曼更有富有创造性。 看了黎曼几何后,她骤然发现,几何原来还可以这样想? 黎曼有天才的洞察力,提出非欧几何,三角形内角和大于180度,发现了空间新理念。 在黎曼那个时代,数学家都认为几何学已经差不多完美了,和经典物理学一样,走进了死胡同,剩下的工作就是修修补补,但是黎曼的开创性,生生造出新数学分支。不夸张的说,他可以是近代数学之父。 数学大类可以分为代数、几何、分析和数论,他一人在这四块的成就单挑他那个时代的数学家。 后来爱因斯坦不懂怎么描述他的相对论,掌握了黎曼几何后,才打开广义相对论的大门,完成物理学革命。 爱因斯坦曾说:“唯有黎曼在上个世纪发现了空间新概念……空间不再一成不变。” 黎曼给后人留下许多难题,著名的有黎曼猜想,千禧年世界七大难题之一。 这种超一流的数学天才震古烁今,整个人类历史上都很罕见。 因为种种关系,华夏一直没有出现天才的土壤,在近代我们国家多灾多难,尽管如此,还是出了很多著名数学家,个人的智商和努力至关重要。 落后西方几代人研究时间,不是一代人就能追上,也要几代人的努力。选拔出可能埋没的数学天才,哪怕只有一个,这就是数学竞赛的意义。 林雪芮看着李轩,就想了很多。 她高中也是CMO金牌得主,热爱数学如生命,但CMO金牌又如何,也不得不接受她天赋不足,没有黎曼这种变态数学想象力,哪怕只有百分之一,她也会选择在数学这条路上继续走下去,而不是中途放弃,来当奥数教练。 而李轩未来会不会走上科研的道路,还很难说,但是她觉得哪怕概率很低,如果李轩真的是数学天才,她也不能让明珠蒙尘。 不能灌输一堆数学知识,启发数学思维才是关键,让学生自己去研究数学。